Identification	Subject	MATH 105, Calculus-2, 6 ECTS			
		Mathematics			
	-	Undergraduate			
		Fall, 2024			
		Vusal Osmanov			
	-	Saracli@mail.ru			
		(+994 70) 3333348			
	-	Monday: 08:30-10:00, Monday: 10	0.10-11.40		
Prerequisites	MATH 101- Calculus				
Language	English				
Compulsory/Elective	Required				
Required textbooks and	Core Textbooks:				
course materials					
	1. George Thomas, et al, Thomas' Calculus: Early Transcendental, 12th edition,				
	Addison-Wesley (2010), (http://libgen.org/)				
	Supplementary book				
	2. James Stewart, Essential calculus. Early transcendentals, Second Edition,				
	Brooks/Cole (2013) (http://libgen.org/)				
Course outline	In this subject we develop a method to calculate the areas and volumes of very general				
	shapes. The integral is of fundamental importance in statistics, the sciences, and				
	engineering. Here we will introduce three-dimensional coordinate systems and				
	vectors, also. The course concerns the study of integration methods, definite integrals				
	and their applications to evaluation areas, volumes, arc length, areas of surfaces of				
	revolution, vectors, three-dimensional Coordinate Systems, limits and continuity in				
	higher dimensions, partial derivatives.				
Course objectives	•		three dimensional coordinate		
Course objectives	The concepts of indefinite and definite integrals, vectors, three dimensional coordinate				
	systems, limits and continuity in higher dimensions, partial derivatives. Application				
	of definite integrals to area, volume and arc length and areas of surfaces of revolution				
	problems.				
Learning outcomes	By the end of the course the students should be able:				
	To find indefinite and definite integrals of functions				
		ea between different simple curves			
	To apply the fundamental theorem of calculus				
		• Vectors			
	Three-Dimensional Coordinate Systems				
	Limits and Continuity in Higher Dimensions, Partial Derivatives				
Teaching methods	Lecture		X		
	Group discussion		X		
	Experiential exercise		X		
Evaluation	Course paper Methods	Date/deadlines	X Dancontogo (9/)		
Evaluation	Midterm Exam	Date/deadines	Percentage (%)		
	Class Participation		5		
	Quizzes		20 (2 quizzes)		
	Activity		5 20 (2 quizzes)		
	Final Exam		40		
	Total		100		
Policy	Preparation f	for class	100		
1 oney			tudy and preparation outside		
	The structure of this course makes your individual study and preparation outside the class extremely important. The lecture material will focus on the major points				
	introduced in the text. Reading the assigned chapters and having some familiarity				
	with them before class will greatly assist your understanding of the lecture. After				
		6 j j our unaorb	6		

the lecture, you should study your notes and work relevant problems and cases from the end of the chapter and sample exam questions. Throughout the semester we will also have a large number of review sessions. These review sessions will take place during the regularly scheduled class periods.

Attendance

Students who do not attend more than 25 % of online classes will not be allowed to take the exam.

Withdrawal (pass/fail)

This course strictly follows grading policy of the School of Science and Engineering. Thus, a student is normally expected to achieve a mark of at least 60% to pass. In case of failure, he/she will be required to repeat the course the following term or year.

Cheating/plagiarism

Cheating or other plagiarism during the Quizzes, Mid-term and Final Examinations will lead to paper cancellation. In this case, the student will automatically get zero (0), without any considerations.

Professional behavior guidelines

The students shall behave in the way to create favorable academic and professional environment during the class hours. Unauthorized discussions and unethical behavior are strictly prohibited.

Participation

Every two non-participations of a student removes 1% out of his/her total percentage.

Ethics

Students should not arrive in late to class.

All cell phones must be turned off and stowed away before entering class.

Use of any electronic devices is not allowed in the classroom and violators will be punished accordingly.

Week	Date/Day (tentative)	Topics	Textbook/ Assignments
1	16.09.24 16.09.24	 Volumes Using Cross-Sections Volumes Using Cylindrical Shells 	Ch. 6.1, 6.2 / not assigned
2	23.09.24 23.09.24	Arc LengthPractice	Ch. 6.3 / not assigned
3	30.09.24 30.09.24	Areas of Surfaces of RevolutionWork and Fluid Forces	Ch. 6.4, 6.5/ not assigned
4	07.10.24 07.10.24	Moments and Centers of MassThe Logarithm Defined as an Integral	Ch. 6.6, 7.1 / not assigned

5	14.10.24 14.10.24	 Exponential Change and Separable Differential Equations Hyperbolic Functions 	Ch. 7.2, 7.3/ not assigned
6	21.10.24 21.10.24	Relative Rates of GrowthIntegration by Parts	Ch. 7.4,8.1/ not assigned Quiz (10 pts)
7	28.10.24 28.10.24	Trigonometric IntegralsTrigonometric Substitutions	Ch. 8.2, 8.3 / not assigned
8	04.11.24 04.11.24	 Midterm Exam Integration of Rational Functions by Partial Fractions 	Ch. 8.4 / not assigned
9	11.11.24 11.11.24	VectorsThree-Dimensional Coordinate Systems	Ch.12.1, 12.2, / not assigned
10	18.11.24 18.11.24	The Dot ProductThe Cross Product	Ch.12.3, 12.4/ not assigned
11	25.11.24 25.11.24	Functions of Several VariablesPractice	Ch. 14.1/ not assigned
12	02.12.24 02.12.24	 Limits and Continuity in Higher Dimensions, Partial Derivatives Practice 	Ch. 14.1/ not assigned
13	09.12.24 09.12.24	 The Chain Rule Directional Derivatives and Gradient Vectors 	Ch. 14.4,14.5/ not assigned Quiz (10 pts)
14	16.12.24 16.12.24	Tangent Planes and DifferentialsPractice	Ch. 14.6 /not assigned
15	23.12.24 23.12.24	Extreme Values and Saddle PointsPractice	Ch. 14.7 /not assigned
	30.12.2024 30.12.2024	Taylor's Formula for Two VariablesPractice	Ch. 14.9 /not assigned
	TBA	Final Exam	

This syllabus is a guide for the course and any modifications to it will be announced in advance.